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Abstract
In this paper, we propose a novel dimensionality reduction method of taking the advan-
tages of the variability, sparsity, and low-rankness of neuroimaging data for Alzheimer’s
Disease (AD) classification. We first take the variability of neuroimaging data into account
by partitioning them into sub-classes by means of clustering, which thus captures the
underlying multi-peak distributional characteristics in neuroimaging data. We then itera-
tively conduct Low-Rank Dimensionality Reduction (LRDR) and orthogonal rotation in a
sparse linear regression framework, in order to find the low-dimensional structure of high-
dimensional data. Experimental results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset showed that our proposed model helped enhance the performances of AD
classification, outperforming the state-of-the-art methods.

Keywords Alzheimer’s Disease (AD) · Feature selection · Subspace learning

1 Introduction

Alzheimer’s Disease (AD) is an irreversible and progressive brain disorder and typically
begins with mild memory loss and later may seriously impair an individual’s ability of daily
activities [12, 25, 26, 30, 44]. Due to limited knowledge about the cause of AD, there is no
cure for AD and most drugs only help slow down the advance of AD.
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As neuroimaging data provide in-vivo information to complement clinical evalua-
tions, computer-aided neuroimaging analysis becomes a powerful tool to help complement
the conventional clinical-based assessments and cognitive measurement for AD diagno-
sis [13]. Computer-aided neuroimaging analysis focuses on conducting AD study with
multi-modality neuroimaging data, such as functional imaging data (e.g., Positron Emis-
sion Tomography (PET)) and structural imaging data (e.g., Magnetic Resonance Imaging
(MRI)), because different types of imaging information could be complementary to inves-
tigate a human brain. In computer-aided neuroimaging analysis, neuroimaging data may
be extracted with a number of features for characterizing the variability of data. How-
ever, both multi-modality data and high-dimensional features easily result in the issue of
‘curse-of-dimensionality’ [32–34, 47, 48].

To address this issue, many machine learning techniques (such as feature selection [3, 14,
32, 38, 50] and low-rank regression [5, 36, 37, 49]) have been designed to reduce the feature
dimension. Feature selection methods, such as statistical t-test and sparse linear regression
[42, 45], find informative feature subsets from original feature set to output interpretable
results [7, 41], and thus is preferable in neuroimaging studies [23, 43]. For example, Liu et
al. [15] and Zhu et al. [43] showed that feature selection improves the classification accu-
racy of AD diagnosis, and Chu et al. [2] demonstrated that feature selection does improve
the classification accuracy, but depends on the method used. Besides, feature selection has
been widely applied in other domains, such as gait analysis [31] and Parkinson’s disease
diagnosis [22]. Low-rank regression considers the relations among the response variables
to conduct subspace learning under the assumption that the rank of the coefficient matrix in
regression is no large than each of its dimension [17], and is very popular in machine learn-
ing and statistics but used less in AD study. Furthermore, subspace learning methods have
recently presented promising performances in various applications [23]. Hence, it is inter-
esting to integrate them in a unified framework, in which we can complement the limitations
of each of them.

In this work, we consider the variability, sparsity, and low-rankness of data into a unified
framework by utilizing various relations inherent in data, to seek possible solutions to the
problems of multi-modality and high-dimensionality of nueroimaging data, for improving
the interpretability and predictability of multi-modality AD classification. We first employ
existing clustering methods to divide each class (i.e., each clinical status in this work) into
sub-classes to form a multi-output representation of response variables, for reflecting the
variability of neuroimaging data. Then we iteratively conduct a Low-Rank Dimensional-
ity Reduction (LRDR) step and an orthogonal rotation step to seek the low-dimensional
structure in data. In the LRDR step, low-rank constraints conduct subspace learning to
extract low-dimensional latent factors, while a sparsity constraint via an �2,1-norm regu-
larizer allows to select class-discriminative features, which thus has the effect of feature
selection. The orthogonal rotation step considers the relations among modalities such that
the multi-modality data, which share the same response variables, are kept consistent in
different modalities. Moreover, these two iteration steps adjust each of steps to output rep-
resentative features in feature selection for improving the interpretability and predictability
of AD diagnosis.

Different from the previous study for early AD diagnosis, the contributions of this paper
have the following three folds.

First, this paper takes the advantages of the variability, sparsity, and low-rankness of data
for AD classification. Second, in this paper, the column-wise low-rank constraints on coef-
ficient matrices extract low-dimensional latent factors from all features for explaining the
response variables, while the row-wise sparsity constraints on coefficient matrices impose
to select class-discriminative features. This enables us to simultaneously conduct subspace
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Table 1 Demographic and clinical information of the subjects

NC AD MCI sMCI pMCI

(N = 101) (N = 93) (N = 202) (N = 55) (N = 63)

Male/Female 62/39 57/36 136/66 35/20 45/18

Age 75.8±4.8 75.4±7.4 75.1±7.1 75.0±6.7 76.4±6.7

(Mean ± SD) [62.0,86.2] [55.1,87.7] [55.1,88.8] [57.7,88.3] [61.4,86.7]

Education 15.8±3.2 14.7±3.2 15.7±2.9 16.0±2.6 15.5±3.0

(Mean ± SD) [7,20] [4,20] [7,20] [12,20] [7,20]

MMSE 28.9±1.1 23.4±2.1 27.2±1.7 26.9±1.7 27.6±1.6

(Mean ± SD) [25,30] [18,27] [24,30] [24,30] [24,30]

CDR 0±0 0.8±0.2 0.50±0 0.50±0 0.50±0

(Mean ± SD) [0,0] [0.5,1] [0.5,0.5] [0.5,0.5] [0.5,0.5]

learning and feature selection, and thus making up for the limitations of each dimensionality
reduction method. Last but not least, unlike the existing multi-task feature selection meth-
ods [29, 40] that select the representative features across tasks, our method considers the
complementary information among modalities to separately select representative features of
each modality (i.e., MRI and PET), since studies have manifested that MRI features have
different informative brain regions with PET features for AD diagnosis [27]. Moreover, our
method also considers the relations among modalities in the orthogonal rotation step to lead
to a nonlinear dimensionality reduction framework. Such considerations among modalities
are naturally designed to exploit the complex system of brain regions.

2 Materials and image preprocessing

We downloaded all neuroimaging data from the ADNI website,1 where the used structural
MR images were obtained from 1.5T scanners and the used PET images used were obtained
30-60 minutes post Fluoro-DeoxyGlucose (FDG) injection. Moreover, these MR images
have been finished with the following preprocessing, including quality and automatically
corrected, while PET images have been finished with the processes including averaging,
spatially aligning, interpolating, intensity normalizing, and smoothing.

In this paper, we use 396 subjects of baseline MRI and 18F-FluoroDeoxyGlucose (18F-
FDG) PET, including 93 AD, 202 MCI, and 101 NC subjects. We further partitioned MCI
subjects into progressive MCI (pMCI), stable MCI (sMCI), and others. More specifically,
55 pMCI subjects converted from MCI to AD in 24 months, while 63 sMCI subjects did not
convert to AD in both 24 months and 36 months2 We summarize the demographics of the
subjects in Table 1.

1http://www.loni.usc.edu/ADNI.
2Besides, the remaining 84 MCI subjects include 33 subjects that did not convert in 24 months but converted
in 36 months, and 51 subjects that were MCI at base line but were missed at any available time points among
0 – 96 months.

http://www.loni.usc.edu/ADNI
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Figure 1 A framework of our method. LRDR represents the low-rank dimensionality reduction step

2.1 Image analysis

We followed the literature [40] to conduct image processing for all MR images and PET
images via the following steps:

– using MIPAV software3 to conduct anterior commissure-posterior commissure correc-
tion.

– correcting intensity inhomogeneity.
– extracting the brain region on each structural MR image via the robust skull-stripping

method.
– conducting manual edition (if needed) and intensity inhomogeneity correction.
– removing cerebellum based on registration.
– correcting intensity inhomogeneity by repeating N3 for three times.
– using FAST algorithm [35] in the FSL package to segment each structural MR image

into three different tissues: Gray Matter (GM), White Matter (WM), and CerebroSpinal
Fluid (CSF).

– using HAMMER [24] to conduct registration to obtain the Region-Of-Interests (ROIs)
based on the Jacob template [11], which dissects a brain into 93 ROIs.

We computed the GM tissue volume in the ROI region by integrating the GM segmen-
tation result of this subject. We further used affine registration to align the PET image to
its responding MR T1 image, and then computed the average intensity of each ROI. As a
result, we have 93 features for each MRI and 93 features for each PET.

3 Proposedmethod

In our framework, we first extract neuroimaging features from MRI images and PET
images, and then select informative features by the proposed Orthogonal Low-Rank Dimen-
sionality Reduction (OLRDR), that iteratively conducts a low-rank dimensionality reduction
step and an orthogonal rotation step. The selected features are then fed into a Support Vec-
tor Machine (SVM), by which we finally identify clinical labels of testing data. Figure 1
shows the schematic diagram of our method.

3http://mipav.cit.nih.gov/clickwrap.php.

http://mipav.cit.nih.gov/clickwrap.php.
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3.1 Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface low-
ercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij ], its
i-th row and j-th column are denoted as xi and xj , respectively. Also, we denote the Frobe-

nius norm and the �2,1-norm of a matrix X as ‖X‖F =
√∑

i ‖xi‖22 =
√∑

j ‖xj‖22 and

‖X‖2,1 = ∑
i ‖xi‖2 = ∑

i

√∑
j x2

ij , respectively. We further denote the transpose opera-

tor, the trace operator, the rank, and the inverse, of a matrix X, as XT , tr(X), rank(X), and
X−1, respectively.

3.2 Low-rank regression

Let X = [x1; ...; xn] = [x1, ..., xd ] ∈ R
n×d and Y = [y1; ...; yn] ∈ {0, 1}n×c be, respec-

tively, a feature matrix and the corresponding class label matrix (as known as a response
matrix), where n, d, and c denote the numbers of samples (or subjects), feature variables,
and response variables, respectively. As for the class label of the i-th sample xi , we use an
indicator vector yi = [yi1, ..., yij , ..., yic] ∈ {0, 1}c such that when xi belongs to the j -th
class, the corresponding j -th element in yi is set to one, i.e., yij = 1, and all the other
elements are set to 0.

A linear regression [49] finding the relationship between the response variables in Y and
the feature variables in X is formulated as follows:

Y = XW + eb (1)

where W ∈ R
d×c is a regression coefficient matrix, b ∈ R

1×c is a bias term, and e ∈ R
n×1

denotes a column vector with all ones. Then the solution of W for a loss function defined
by least square error can be obtained by Ordinary Least Square (OLS) estimation [8, 38] as
follows:

Ŵ = (XT X)−1XT (Y − eb). (2)

Note that for multiple response variables, i.e., c > 1, the k-th column coefficients of
W are just the least square estimation in the regression of yk on x1, . . . , xd , thus (2) is
equivalent to conduct the OLS estimation for each response variable separately. In other
words, it does not make use of the possible relations among the response variables, thus
limiting its modeling power.

One potential approach to circumvent such limitation is to explicitly take into account the
possible relations among response variables by imposing a constraint on the rank ofW, i.e.,
rank(W) ≤ min(d, c), as described in [28]. The motivation using the low-rank constraint
is that, in real applications, noises or outliers often increase the rank of a feature matrix, or
the features of X are not linearly independent (i.e, X is not of full rank) [16].

Certainly, rank(W) = r , where r ≤ min(d, c), implies rank(XW) ≤ r and the inverse
is not necessarily true. With the constraint rank(XW) ≤ r , we know that the rank of the
predicted matrix Ŷ (i.e., Ŷ = XW) of the response variables Y is also less than r . We can
interpret this as follows: there are less than r columns of Y (corresponding to less than r

response variables) such that each of c columns of Y is actually a linear combination of
those r columns, i.e., there are only r effectively independent response variables. Such a
low-rank constraint obviously considers the relations among response variables.
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The low-rank constraint on W also implies that the coefficient matrix can be expressed
as the product of two lower rank matrices [14, 37], i.e.,

W = BAT (3)

where B ∈ R
d×r and A ∈ R

c×r . For a fixed r, by replacing W with BAT in (1), a low-rank
regression can be formulated as:

min
A,B,b

‖Y − XBAT − eb‖2F (4)

Note that XB transforms the feature matrix into an r-dimensional space, spanned by r

latent factors, and when r is smaller than d, it has the effect of reducing dimensionality.
That is, r latent factors estimated from d features of X are sufficient to explain the response
variables. In this regard, the low-rank constraint on the coefficient matrix can be considered
as conducting subspace learning on X. Furthermore, the low-rank constraint also seeks the
interaction between Y and X because it enables to use r latent response variables to linearly
explain the original c response variables while the value of r depends on the rank of XW.
Hence, the low-rank constraint could improve prediction accuracy by conducting subspace
learning on X, considering the relations in the columns of Y, and seeking the interaction
between Y and X.

3.3 OLRDR onmulti-modality data

Multi-modality data (e.g., MRI and PET) have been shown to provide complementary infor-
mation to each other, thus helping enhance the performance of AD diagnosis [43, 46, 47].
Denoting the feature matrices of MRI and PET as X1 ∈ R

n×d and X2 ∈ R
n×d , respectively,

we define the objective function of low-rank multi-modality regression4 as follows:

min
A1,A2,B1,B2,b1,b2

‖Y − X1B1AT
1 − eb1‖2F

+‖Y − X2B2AT
2 − eb2‖2F

(5)

where Bi ∈ R
d×r , Ai ∈ R

c×r , and bi ∈ R
1×c, i = 1, 2. Although the low-rank regres-

sion allows r latent factors of XiBi (i = 1, 2) to directly represent the response variables,
such r latent factors were basically obtained from d-dimensional features. When there are
a large number of features from neuroimaging data, some of them may not be useful in
prediction. The un-useful features may affect the extraction of r latent factors of Xi and
also the interpretation of Y. Thus, it is helpful to perform feature selection on the low-rank
multi-modality regression to exclude the redundant features. In this way, conducting feature
selection on Xi can be regarded as conducting subspace learning and explaining response
variables using ‘clean’ data. To this end, we employ two �2,1-norm regularizers, one for each
modality, and additional orthogonal constraints to encourage the latent factors unrelated as
follows:

min
A1,A2,B1,B2,b1,b2

‖Y − X1B1AT
1 − eb1‖2F

+α‖B1‖2,1 + ‖Y − X2B2AT
2 − eb2‖2F+β‖B2‖2,1, s.t.,AT

1 A1 = Ir ,AT
2 A2 = Ir .

(6)

4In this work, we extract the same number of features from MRI and PET as described in Section 2.1 and
thus their feature dimensions are the same. However, it should be noted that the proposed method can be
easily extended to multiple modalities with different numbers of features. Moreover, in the multi-modality
case of this work, r < min{rank(Bi ), rank(Ai )} or r < min{rank(Bi ), rank(A)}, i = 1, 2.
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where Ir ∈ R
r×r and α and β are the tuning parameters. The �2,1-norm regularizers on Bi

penalize coefficients of Bi in a row-wise manner for joint selection or un-selection of the
features in predicting the response variables.

It is worth noting that the column-wise low-rank constraints and the row-wise �2,1-norm
regularizers on Bi have the effects of conducting subspace learning and feature selection on
Xi , respectively. That is, the low-rank constraints obtain r latent factors and the �2,1-norm
regularizers remove redundant features, both from d features ofXi . In this work, we propose
to consider both low-rankness and sparsity in regression to conduct a low-rank dimen-
sionality reduction (LRDR), with the goal of selecting informative features by considering
the relations between the neuroimaging features and the response variables via �2,1-norm
regularizers and utilizing the relations among response variables via low-rank constraints.
Moreover, motivated from the previous studies that the presentation of informative brain
regions in MRI for AD diagnosis are different from those in PET [15, 34], we consider the
difference between modalities by applying �2,1-norm regularizers on Bi for each modality
separately with the assumption that MRI and PET may select different brain regions for AD
diagnosis.

We also take advantage of the relations among modalities by replacing two orthogonal
variables (i.e., A1 and A2) in (6) with an orthogonal variable A as follows:

min
A,B1,B2,b1,b2

‖Y − X1B1AT − eb1‖2F
+α‖B1‖2,1 + ‖Y − X2B2AT − eb2‖2F+β‖B2‖2,1, s.t.,AT A = Ir .

(7)

where B1 and B2, respectively, are the subspace matrices of MRI and PET, and A is the
shared regression parameter matrix of two modalities. The reason of such replacement is
that A connects two modalities. Specifically, MRI and PET have different low-level repre-
sentations (i.e., X1 and X2) but share the same high-level representation Y, thus it should
have relation between each of the feature matrices and the response matrix. Once conduct-
ing dimensionality reduction on X1 and X2, the new low-dimensional representations (i.e.,
X1B1 and X2B2) could change the distribution of original low-level representations, so a
rotation (or transformation) AT should be used to transfer them into the original label space
spanned by the high-level representation Y. In other words, Y should take a rotation (i.e.,
A) for seamlessly connecting these two new spaces. Such an orthogonal rotation step nat-
urally makes up for the disadvantage resulted by the LRDR step, and explores the relation
among modalities.

3.4 OLRDR onmulti-output multi-modality data

In neuroimaging study, one often conducts a binary classification, such as AD vs. NC, MCI
vs. NC, and progressive MCI (pMCI) vs. stable MCI (sMCI), for AD diagnosis. In this
way, the dimensions c of Y is low, e.g., c = 2, for binary classification with 0-1 encod-
ing, so the value of r may be very small according to the constraint, i.e., r ≤ min(d, c).
Thus (6) makes little improvement. We, therefore, extend the abstract low-dimensional
representation of Y in the conventional AD study to a concrete multi-output representa-
tion by exploiting the clustering methods, based on the inter-subject variability (or subject
variability) of neuroimaging data [20, 39].

In imaging analysis, a low-level representation X and a high-level representation Y char-
acterize, respectively, the concreteness and abstractness of imaging data. The high-level



914 World Wide Web (2019) 22:907–925

representation can be characterized with more details since the inter-subject variability indi-
cates that neuroimaging data may have multiple peaks in distribution [20]. In AD study, the
high-level representation of MCI can be further categorized into sub-classes, such as pMCI
and sMCI. In this way, the complicated distribution of a class with multiple peaks can be
modeled with multiple simple distributions, one for each sub-class. By following the previ-
ous work in [39], we propose to divide each class, i.e., each high-level representation (e.g.,
either AD or NC in the classification of AD vs. NC) into sub-classes via a clustering method
(e.g., hierarchical clustering [9] in this paper) and each of the resulting clusters is regarded
as a sub-class.

Specifically, given the response matrix Y ∈ R
n×c, we separately cluster the subjects in

each i-th original class to form its corresponding sub-classes by denoting the mi extended
sub-classes of the i-th original class as [Y∑i−1

j=1 mj +1, ...,Y∑i−1
j=1 mj +mi

] and each row has

only one ‘1’, which means that each subject in mi sub-classes only belongs to one sub-class.
The new response matrix Ŷ (i.e., Ŷ = [Y1,Y2, ...,Yc,Yc+1, ...,Yc+m1 , ..., Yc+∑c−1

j=1 mj +1,

....,Y
c+∑c−1

j=1 mj +mc
] ∈ {0, 1}n×m, where m = c+∑c

i=1 mi includes two parts, i.e., original

labels copied in the first c columns and the extended labels produced by a clustering method
in the remaining (m−c) columns. By rearranging Ŷ as Ŷ = [Ŷ1, ..., Ŷm], our final objective
function can be written as follows:

min
Â,B̂1,B̂2,b̂1,b̂2

‖Ŷ − X1B̂1ÂT − eb̂1‖2F
+α‖B̂1‖2,1 + ‖Ŷ − X2B̂2ÂT − eb̂2‖2F
+β‖B̂2‖2,1, s.t., ÂT Â = Ir

(8)

where Ŷ ∈ R
n×m, B̂1, B̂2 ∈ R

d×r , Â ∈ R
m×r and b̂1, b̂2 ∈ R

1×m.
After optimizing (8) by Algorithm 1, we have different zero row vectors in both B̂1 and

B̂2, so we can discard the irrelevant or noisy components, i.e., the features whose regres-
sion coefficient vectors are zero in the rows on B̂1 and B̂2. Given representative features
from MRI and PET, we concatenate the reduced features and then use them to build binary
classifiers with SVM.

3.5 Optimization

This section describes the optimization process to find optimal parameters of Â, b̂1, b̂2, B̂1
and B̂2. Specifically, we iteratively conduct the following two steps until satisfying prede-
fined conditions: (i) Update Â with fixed b̂1, b̂2, B̂1 and B̂2, i.e., the orthogonal rotation
step. (ii) Update b̂1, b̂2, B̂1 and B̂2 with fixed Â, i.e., the LRDR step.

3.5.1 Update Â with fixed b̂1, b̂2, B̂1 and B̂2.

For fixed b̂1, b̂2, B̂1 and B̂2, the optimization problem in (8) reduces to

min
Â

‖Ŷ − X1B̂1ÂT − eb̂1‖2F
+‖Ŷ − X2B̂2ÂT − eb̂2‖2F , s.t., ÂT Â = Ir .

(9)
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After simple mathematical manipulation, (9) becomes:

min
Â

‖Ỹ − X̃ÂT ‖2F , s.t., ÂT Â = Ir , (10)

where Ỹ = [Ŷ − eb̂1; Ŷ − eb̂2] ∈ R
2n×m and X̃ = [X1B̂1;X2B̂2] ∈ R

2n×r . Equation
(10) is actually an orthogonal Procrustes problem [6]. The optimal solution of Â is UVT ,
where U ∈ R

m×r and V ∈ R
r×r are obtained from the singular value decomposition of

ỸT X̃ = UDVT , and D ∈ R
r×r is a diagonal matrix.

3.5.2 Update b̂1, b̂2, B̂1 and B̂2 with fixed Â.

For fixed Â, the optimization problem in (8) reduces to

min
B̂1,B̂2,b̂1,b̂2

‖Ŷ − X1B̂1ÂT − eb̂1‖2F + α‖B̂1‖2,1
+‖Ŷ − X2B̂2ÂT − eb̂2‖2F + β‖B̂2‖2,1,

(11)

By setting the derivative of (11) w.r.t. b̂1 to zero, we have:

2eT X1B̂1ÂT + 2eT eb̂1 − 2eT Ŷ = 0 (12)

After simple mathematical manipulation, we have:

b̂1 = 1

n
eT Ŷ − 1

n
eT X1B̂1ÂT (13)

Similarly, by setting the derivative of (11) w.r.t. b̂2 to zero, we obtain optimal b̂2 as:

b̂2 = 1

n
eT Ŷ − 1

n
eT X2B̂2ÂT (14)

Substituting (13) and (14) into (11) and lettingH = In− 1
n
eeT ∈ R

n×n, where In ∈ R
n×n

is an identity matrix, we have:

min
B̂1,B̂2

‖HŶ − HX1B̂1ÂT ‖2F + α‖B̂1‖2,1
+‖HŶ − HX2B̂2ÂT ‖2F + β‖B̂2‖2,1,

(15)

As Â has orthogonal columns, there is a matrix Â⊥ with orthogonal columns such that
(Â, Â⊥) is an orthogonal matrix. Thus, we have

‖HŶ − HX1B̂1ÂT ‖2F + ‖HŶ − HX2B̂2ÂT ‖2F
= ‖(HŶ − HX1B̂1ÂT )(Â, Â⊥)‖2F

+‖(HŶ − HX2B̂2ÂT )(Â, Â⊥)‖2F
= ‖HŶÂ − HX1B̂1‖2F + ‖HŶÂ⊥‖2F

+‖HŶÂ − HX2B̂2‖2F + ‖HŶÂ⊥‖2F (16)
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Both the second term and the fourth term in (16) do not involve B̂1 and B̂2. Therefore,
for fixed Â, b̂1 and b̂2, the objective function in (15) reduces to

min
B̂1,B̂2

‖HŶÂ − HX1B̂1‖2F + α‖B̂1‖2,1
+‖HŶÂ − HX2B̂2‖2F + β‖B̂2‖2,1.

(17)

In this work, we used the framework of iteratively reweighted least square [10] to
optimize (17), which is thus equivalent to

min
B̂1,B̂2

‖HŶÂ − HX1B̂1‖2F + αtr(B̂T
1 PB̂1)

+‖HŶÂ − HX2B̂2‖2F + βtr(B̂T
2 QB̂2),

(18)

where P ∈ R
d×d and Q ∈ R

d×d , respectively, are the diagonal matrices with pjj = 1
2‖B̂j

1‖22
and qjj = 1

2‖B̂j
2‖22

, j = 1, ..., d . By setting (18) w.r.t. B̂1 to zero, we obtain:

B̂1 = (XT
1 HX1 + αP)−1XT

1 HŶÂ. (19)

Similarly, by setting the derivative of (18) w.r.t. B̂2 to zero, we have:

B̂2 = (XT
2 HX2 + βQ)−1XT

2 HŶÂ (20)

We summarize the pseudo code of solving (8) in Algorithm 1. It can be proved that the
objective function value in (8) monotonically decreases in each iteration using Algorithm 1
according to literature [10]. In Algorithm 1, the LRDR step and the orthogonal rotation step
adjust each other to help find optimal parameters b̂1, b̂2, B̂1, B̂2, and Â, thus ensuring the
output of class-discriminative features.

Algorithm 1 Pseudo code of solving (8)

Input: X1 X2 Y ;

Output: B1, B2;

1 Do clustering on each class of Y to output Y;

2 Initialize = 1;

3 Initialize b1 1 and b2 1 as two random vectors /* b : the t-th

iteration result of b , i = 1, 2. */;

4 Initialize B1 1 and B2 1 as two random matrices;

5 repeat

6 Update A 1 via (10);

7 Update b1 1 via (13);

8 Update b2 1 via (14);

9 Update P 1 via 1

2 B 1 1
2
2

1 ;

10 Update Q 1 via 1

2 B 1 2
2
2

1 ;

11 Update B1 via (19);

12 Update B2 via (20);

13 = +1;

14 until The difference between the objective function values of (8) within two sequential
iterations is less than 10 5;

1

1
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4 Experimental results

We conducted various experiments on the ADNI dataset to compare our method with the
state-of-the-art methods.

4.1 Competingmethods

In order to validate the effectiveness of the proposed method, we compared with the follow-
ing methods: 1) Original features based method (‘Original’) conducts classification on the
concatenation of MRI data and PET data with all features, i.e., without feature selection.

2) The feature selection methods on single-modality data include MRI-based Feature
Selection (MRIFS) and PET-based Feature Selection (PETFS), where MRIFS and PETFS,
respectively, conduct feature selection via Inter-Modality-based Feature Selection (IDFS)
[15] with only MRI data and PET data.

3) The state-of-the-art feature selection methods include Multi-Modal Multi-Task (M3T)
[34], IDFS [15], and Sparse Joint Classification and Regression (SJCR) [29]. M3T includes
two steps: (1) using multi-task feature selection to determine a common subset for multi-
ple response variables (or multiple tasks) from each modality, and (2) using a multi-kernel
decision fusion to integrate the selected features from all modalities for prediction. IDFS
conducts feature selection by simultaneously imposing the preservation of the inter-
modality relationship (i.e., preserving the relative distance between the feature vectors
extracted from different modalities of the same subject) on multi-modality data, and also
enforcing the sparseness of selected features from each modality. SJCR uses a logistic loss
function and a least square loss function simultaneously along with an �2,1-norm regular-
izer for multi-task feature selection. The methods (e.g., M3T, IDFS, and SJCR) embedded
their feature selection models into a multi-task learning framework and selected the same
features for both MRI and PET. Both M3T and SJCR do not consider the relations among
tasks, while IDFS considers the preservation of relative distance between features.

(4) Baseline: (6) that considers the subclass issue is used to test the effectiveness of the
assumption of (8), i.e., different modalities share the same high-level representation.

4.2 ADNI study

4.2.1 Experimental setup

We considered three binary classification tasks (including AD vs. NC, MCI vs. NC, and
pMCI vs. sMCI) on two-modality data (i.e., MRI and PET) to evaluate the performance
of all competing methods, in terms of the metrics of classification accuracy, sensitivity,
specificity, and Area Under a receiver operating characteristic Curve (AUC).

We used a 10-fold cross-validation method to compare all methods. Specifically, we first
randomly partitioned the whole dataset into 10 subsets. We then selected one subset for
testing and used the remaining 9 subsets for training. We repeated the whole process 10
times to avoid the possible bias during dataset partitioning for cross-validation. The final
result reported in Tables 2, 3, 4 and 5 was computed by averaging results from all ten
experiments.

For the model selection, we set α ∈ {10−5, ..., 105}, β ∈ {10−3, ..., 103}, the number
of sub-classes for each response variable ∈ {5, 8, 10, 12}, and r ∈ {10%, 30%, 50%,
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Table 2 Classification performance of all methods for AD vs. NC

Accuracy Sensitivity Specificity AUC

Original 0.828±0.12� 0.880±0.10� 0.770±0.22� 0.903±0.12�
MRIFS 0.846±0.08� 0.886±0.09� 0.805±0.14� 0.910±0.07�
PETFS 0.834±0.08� 0.857±0.12� 0.809±0.16� 0.889±0.11�
M3T 0.855±0.09� 0.866±0.10� 0.843±0.12� 0.925±0.06*

IDFS 0.862±0.22� 0.876±0.11� 0.847±0.12� 0.927±0.06*

SJCR 0.848±0.08� 0.892±0.10* 0.802±0.13� 0.920±0.05*

Baseline 0.869±0.11� 0.897±0.16* 0.856±0.12� 0.925±0.09*

Proposed 0.917±0.07 0.918±0.08 0.916±0.08 0.943±0.05

70%, 90%} of the number of full-rank5 in (8) and C ∈ {2−5, ..., 25} in SVM with a lin-
ear kernel by a 5-fold inner cross-validation, where the training data are further partitioned
into five parts to select the best combination of parameters with the highest classifica-
tion accuracy, to be used in testing.. For fair comparison, we also conducted 5-fold inner
cross-validation to conduct model selection for each competing method. Specifically, for
MRIFS, PETFS, and IDFS, we followed the literature [15] to set the values in the ranges of
λ1 ∈ {10−3, 10−2..., 103} and λ2 ∈ {10−4, 10−2..., 101}. For SJCR and M3T, we optimized
their sparsity parameters by cross-validating the value in the ranges of {10−5, 10−3..., 105}
(as in [29]) and {10−5, ..., 102}, respectively, to obtain their best performance.

4.3 Classification results

We summarized the performances of all methods on four binary classification tasks in
Tables 2–5.6 The proposed method outperformed all the competing methods in all classi-
fication tasks. For example, for four binary classification tasks, our method improved, on
average, the classification accuracy by 4.9% (vs. Baseline), 5.4% (vs. IDFS), 6.9% (vs.
M3T), 7.2% (vs. PETFS), 8.0% (vs. MRIFS), and 9.9% (vs. Original), respectively. Mean-
while, compared to all the competing feature selection methods, our method achieved the
maximal and minimal improvements by 8.3% (vs. PETFS) and 4.8% (vs. Baseline) on AD
vs. NC, 8.8% (vs. SJCR) and 5.0% (vs. Baseline) on MCI vs. NC, 7.4% (vs. PETFS) and
4.9% (vs. Baseline) on pMCI vs. sMCI, and 9.6% (vs. MRIFS) and 4.0% (vs. Baseline)
on AD vs. MCI, respectively. The reason may be that, the proposed method considered
the following constraints for conducting feature selection: 1) all kinds of relations inherent
in data; 2) iteratively conducting the procedures of low-rank dimensionality reduction and
orthogonal rotation; and 3) selecting different features from different modalities.

It is noteworthy that all methods achieved the highest classification performance on AD
vs. NC. For example, the average classification accuracy of all methods was 85.7% (AD vs.

5In our experiments, we used matlab function ‘floor’ to discritize the real values of r.
6In Tables 2–5, the boldface denotes the maximum performance in each column. (Symbols * and �, respec-
tively, represent statistically significant difference between the proposed method and the comparison methods
under p < 0.05 and p < 0.001, on the paired-sample t-tests at 95% significance level.)
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Table 3 Classification performance of all methods for MCI vs. NC

Accuracy Sensitivity Specificity AUC

Original 0.631±0.13� 0.201±0.26� 0.703±0.08� 0.590±0.11�
MRIFS 0.662±0.05� 0.204±0.15� 0.891±0.23� 0.660±0.11�
PETFS 0.661±0.07� 0.316±0.19� 0.834±0.11� 0.648±0.12�
M3T 0.672±0.06� 0.330±0.18� 0.844±0.09� 0.651±0.08�
IDFS 0.676±0.23� 0.329±0.18� 0.850±0.09� 0.661±0.08�
SJCR 0.657±0.05� 0.335±0.17� 0.899±0.11* 0.671±0.08*

Baseline 0.689±0.11� 0.371±0.12� 0.886±0.15� 0.668±0.11*

Proposed 0.745±0.05 0.428±0.24 0.903±0.07 0.701±0.09

NC), 67.4% (MCI vs. NC), 66.4% (pMCI vs. sMCI), and 72.7% (AD vs. MCI), respectively.
Another observation is the low sensitivity (or specificity) for the classification of MCI vs.
NC (or pMCI vs. sMCI). A possible reason for these two observations is that the difference
between AD and NC is relatively prominent while there is no substantial difference between
MCI and NC (or between pMCI and sMCI). Furthermore, our proposed method outper-
formed Baseline on all the datasets, which supports our assumption “different modalities
share the same high-level representation”.

4.4 Most discriminative brain regions

We investigated the brain regions as potential biomarkers for AD diagnosis based on the
selected frequency of the brain regions by the proposed method. We listed the frequency
(defined as the probability of a feature appeared in the 100 experiments - ten times of
ten-fold cross-validation) of each feature in our 10 repeated 10-fold cross-validation exper-
iments in Figure 2 and also visualized the top selected brain regions in Figure 3. In the
classification task of MCI vs. NC, our method selected regions of uncus right, hippocampal
formation right, uncus left, middle temporal gyrus left, hippocampal formation left, amyg-

Table 4 Classification performance of all methods for pMCI vs. sMCI

Accuracy Sensitivity Specificity AUC

Original 0.622±0.13� 0.722±0.22� 0.376±0.25� 0.576±0.17�
MRIFS 0.654±0.12� 0.735±0.18� 0.561±0.23* 0.681±0.18�
PETFS 0.652±0.13� 0.768±0.20� 0.520±0.22� 0.716±0.16*

M3T 0.659±0.13� 0.801±0.17� 0.496±0.23� 0.712±0.15*

IDFS 0.674±0.05� 0.834±0.18* 0.474±0.09� 0.687±0.09�
SJCR 0.655±0.11� 0.741±0.19� 0.556±0.23� 0.699±0.17�
Baseline 0.671±0.13� 0.842±0.16� 0.570±0.27* 0.715±0.19*

Proposed 0.726±0.11 0.848±0.15 0.585±0.28 0.735±0.15
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Table 5 Classification performance of all methods for AD vs. MCI

Accuracy Sensitivity Specificity AUC

Original 0.645±0.17� 0.342±0.19� 0.784±0.12� 0.583±0.09�
MRIFS 0.693±0.08� 0.442±0.14* 0.884±0.07� 0.623±0.10�
PETFS 0.715±0.07� 0.408±0.15� 0.898±0.07� 0.694±0.08�
M3T 0.728±0.08� 0.364±0.13� 0.932±0.06* 0.705±0.09�
IDFS 0.748±0.11* 0.388±0.12� 0.930±0.09* 0.737±0.12�
SJCR 0.745±0.17* 0.376±0.18� 0.930±0.13* 0.744±0.12�
Baseline 0.753±0.11* 0.428±0.18* 0.935±0.14* 0.752±0.15*

Proposed 0.789±0.17 0.463±0.09 0.955±0.12 0.787±0.11

dala left, middle temporal gyrus right, and amygdala right as top selected ones, which have
also been pointed out in the previous work [34] and have been shown to be highly related
to AD or related dementia (e.g., MCI) in clinical diagnosis [1, 4, 18]. Hence, brain regions
selected by our method could be further incorporated for future clinical analysis.

Besides, we had some interesting observations: 1) In the process of feature selection, our
method selected less number of MRI features than PET features in our experiments. For
example, our method selected, on average, 16.3/40.3, 16.6/40.8, 13.3/32.6, and 32.1/31.6,
respectively, of MRI/PET features on the classification tasks of AD vs. NC, MCI vs. NC,
pMCI vs. sMCI, and AD vs. MCI. This observation manifested that MRI and PET could
provide complementary information to each other to enhance the classification performance
of multi-modality data for AD classification. 2) Different classification tasks have selected
different brain regions from each modality.
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Figure 2 Frequency of the selected ROIs of MRI (upper row) and PET (down row) by the proposed method
on four binary classification tasks, where horizontal axis represents the number of ROIs and vertical axis
represents the frequency (ranging from 0 to 100) in ten cross-validation experiments. Frenquency1 = 11
in the first sub-figure (i.e., the top left sub-figure) means that the first ROI was selected 11 times over 100
repeats by the proposed method
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(a) MRI ROIs for AD vs. NC

(b) PET ROIs for AD vs. NC

(c) MRI ROIs for MCI vs. NC

(d) PET ROIs for MCI vs. NC

(e) MRI ROIs for pMCI vs. sMCI

(f) PET ROIs for pMCI vs. sMCI

(g) MRI ROIs for AD vs. MCI

(h) PET ROIs for AD vs. MCI

Figure 3 Top selected regions of the proposed method on three binary classification tasks
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Figure 4 Classification accuracy of our method with different number of ranks of coefficient matrix in the
case of the fixed number of subclasses (i.e., 6) for each response variable on four different classification tasks

4.5 Discussion

In this section, we investigate three aspects of the proposed method, i.e., the effect of
different number of ranks (i.e., r) in (8), and the effect of different number of sub-classes
for each original class in Section 3.4.

Figures 4 and 5 visualize, respectively, the change of classification accuracies according
to different values of a rank, i.e., r ∈ {10%, 30%, 50%, 70%, 90%, 100%} of the number
of the full rank and different number of clusters or sub-classes (i.e., {1, 2, 3, 4, 5}) in each
class. From Figure 4, we observe that the performance with low-rank constraint in most
of cases outperformed the performance of the cases with full-rank. This manifested that it
is reasonable to analyze neuroimaging data with a low-rank constraint in AD study. The
reason is that, the low-rank constraints, conducting subspace learning, help find the low-
dimensional structure of high-dimensional neuroimaging data via considering the relations
among response variables.

Figure 5 explains that different numbers of sub-classes for each original class outputted
different results, and the case, in which the response variables are partitioned into 6 sub-
classes, achieved the best classification performance on all three classification tasks in our
experiments. Besides, we found that the results of using one cluster 1) were worse than the
results of using more than one clusters, which indicates the variability of real datasets; and
2) were better than the results of all the competing methods, which shows the effectiveness
of our proposed OLRDR on multi-modality data, i.e., Section 3.3. By combing these two
observations together, we conclude that the variability assumption (i.e., Section 3.4) does
work.
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Figure 5 Classification accuracy of the proposed method with different numbers of clusters in the case of
the fixed number of ranks (i.e., r = 5) on four different classification tasks
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5 Conclusion

In this paper, we focused on taking advantages of different aspects of data such as variability,
sparsity, and low-rankness with multiple modalities for AD classification. Specifically, we
first extended conventional label representation (e.g., 0-1 encoding) to a multi-output rep-
resentation, and then iteratively conducted a low-rank dimensionality reduction step and an
orthogonal rotation step to select representative features, by taking advantages of all kinds of
relations inherent in the neuroimaging data. The experimental results on the ADNI dataset
with MRI and PET verified the efficacy of the proposed method over the state-of-the-art
methods in terms of classification performance on three binary classification tasks.

According to Section 4.3, the classification performance on both MCI vs. NC and pMCI
vs. sMCI are lower than the performance of AD vs. NC. This may result from the sub-
tle changes between two clinical statuses. In our future work, we will focus on selecting
representative features via transfer learning methods (e.g., [21]) to further improve the clas-
sification performance of AD-to-MCI classification, such as MCI vs. NC and pMCI vs.
sMCI. For example, we could use the information of the classification AD vs. NC to help
enhance classification performance of the classification pMCI vs. sMCI according to the
conclusion in [19], which demonstrated that the features selected by the classification AD
vs. NC can be regarded as representative features of the classification pMCI vs. sMCI.
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